「分割汇总」百度七日分割学习记录(二)
实例分割和全景分割
基本概念
- 语义分割:每个像素所属类别(包括stuff和object类)
- 实例分割:每个object类别和mask(只有object)
- 全景分割:每个像素所属类别和object类别的实例ID
Mask R-CNN
-
Mask R-CNN结构
-
RPN网络(Region Proposal Network):
- 对backbone提取出的feature map去预测哪些地方可能存在对象 ,通常使用9个先验框进行判断,然后通过平移来调整先验框
- Feature Pyramid Network(特征金字塔)
- Head Architecture
- 对backbone提取出的feature map去预测哪些地方可能存在对象 ,通常使用9个先验框进行判断,然后通过平移来调整先验框
全景分割:
UPSnet网络
语义分割头(Semantic segmentation head)
采用的是可变形卷积,对feature map进行下采样,再经过一个上采样将所有的feature map上采样到同一个维度然后进行堆叠融合,再经过一乘一卷积获得语义分割信息。
全景分割头(panoptic segmentation head)
Panoptic-DeepLab
实例分割和全景分割论文推荐:
实例分割(lnstance Segmentation):
Dai et al., Instance-aware semantic segmentation via multi-task network cascades, In CVPR 2016
Li et al., Fully convolutional instance-aware semantic segmentation, In CVPR 2017
He et al., Mask R-CNN,In lCCV 2019
Chen et al., Masklab: Instance segmentation by refining object detection with semantic and direction features,IncVPR 2018
Chen et al.,Tensormask: A foundation for dense object segmentation, In CVPR 2019Bolya et al.,YOLACT: Real-time instance segmentation, In CVPR 2019
Xie et al,PolarMask: Single shot instance segmentation with polar representation, In CVPR 2020
全景分割(Panoptic Segmentation):
Li et al.,Attention-guided unified network for panoptic segmentation. In CVPR,2019
Kirillov et al.,Panoptic feature pyramid networks. In ’ CVPR,2019
Sofiiuk et al.,Adaptive instance selection network. In lCCV,2019
Xiong et al., Upsnet: A unified panoptic segmentation network. In CVPR, 2019
Yang et al., Deeperlab: Single-shot image parser, In arXiv 2019
Li et al.,Learning to fuse things and stuff, In arXiv 2018
Porzi et al., Seamless scene segmentation.In CVPR,2019
Gao et al.,Ssap: Single-shot instance segmentation with affinity pyramid. In lCCV, 2019