「DIP」DIP考试复习
数字图像处理复习 (ps:...
「PAT甲级」PAT练习题
PAT练习题,共(13/167)题(持续更新中) 声明:此博客中提及到的所有题目均出自PTA平台的提供的PAT甲级练习题,不存在任何盗版行为 A+B Format 本题就是将计算结果按照英文的输出习惯(三位一逗号)进行输出,思路很简单就是直接将计算结果转成字符串,扭转,3位加一个逗号即可 12345678910111213141516171819202122#include <bits/stdc++.h>using namespace std;int a, b;string res;int main(){ // freopen("1.txt", "r", stdin); cin >> a >> b; res = to_string(a + b); reverse(res.begin(), res.end()); int t = 3; while (res.size() > t) { if ('0' <= res[t] &&...
「分割汇总」百度七日分割学习记录(二)
实例分割和全景分割 基本概念 语义分割:每个像素所属类别(包括stuff和object类) 实例分割:每个object类别和mask(只有object) 全景分割:每个像素所属类别和object类别的实例ID Mask R-CNN Mask R-CNN结构 RPN网络(Region Proposal Network): 对backbone提取出的feature map去预测哪些地方可能存在对象 ,通常使用9个先验框进行判断,然后通过平移来调整先验框 Feature Pyramid Network(特征金字塔) Head Architecture 全景分割: UPSnet网络 语义分割头(Semantic segmentation head) 采用的是可变形卷积,对feature map进行下采样,再经过一个上采样将所有的feature map上采样到同一个维度然后进行堆叠融合,再经过一乘一卷积获得语义分割信息。 全景分割头(panoptic segmentation...
「分割汇总」百度七日分割学习记录(一)
百度分割学习(一) 语义分割算法的基本概念 语义分割算法的基本流程 输入:图像(RGB) 算法:深度学习模型 输出:分类结果(与输入大小一致的单通道图) 训练过程 输入:image+label 前向:out = model(image) 计算损失:loss = loss_func(out,label) 反向:loss.backward() 更新权重:optimizer.minimize(loss) 分割网络的性能指标mAcc 将pred矩阵和GT矩阵打平然后比较每一个数字是否相同,这里的数字表示的这个位置的像素点应该是什么标签,这里的数字就是标签,两个标签相同才正确 语义分割性能指标mIoU 分割每一个类别的交并比 mean主要体现在求了每一个类别的交并比后取均值表示为最终结果 全卷积FCN网络 FCN全称是Fully Convolusional Networks,通俗地讲就是全卷积,没有FC层 Feature map尺寸变大: 卷积:卷积越卷越小 upsample(上采样):越变越大 Up-sample 1. 上采样方法:Bilinear...
「LeetCode」剑指offer学习计划
剑指Offer Day1 用两个栈实现队列 剑指 Offer 09. 用两个栈实现队列 - 力扣(LeetCode) (leetcode-cn.com) 栈A用于存插入的数据,栈B用于出栈 插入函数,直接在A中入栈即可,出队时先看栈B是否为空,不为空直接输出B栈顶 否则看看A是否为空,为空的话说明没有数据 不是上述两种情况,则将A中的数据出栈后插入B中,再取出B的栈顶元素。 12345678910111213141516171819202122232425262728293031323334353637class CQueue { stack<int> A,B;public: CQueue() { while(A.size())A.pop(); while(B.size())B.pop(); } void appendTail(int value) { A.push(value); } int deleteHead()...
「LeetCode」刷题记录
两数之和 1. 两数之和 - 力扣(LeetCode) (leetcode-cn.com) 解法1:暴力解法(O(n2)O(n^2)O(n2)) 先在这个数取出位置i的数字,然后选择j=i+1,判断两个数字相加是否为目标数字,是则返回,否则j++,j遍历完就i++ 12345678910111213141516class Solution {public: vector<int> twoSum(vector<int>& nums, int target) { vector<int> res; for(int i = 0;i<nums.size();i++) for(int j = i+1;j<nums.size();j++){ if(nums[i]+nums[j] == target) { res.push_back(i); ...
「论文阅读」Instance and Panoptic Segmentation Using Conditional Convolutions
Instance and Panoptic Segmentation Using Conditional Convolutions 论文名称:Instance and Panoptic Segmentation Using Conditional Convolutions 作者:Zhi Tian; Bowen Zhang; Hao Chen; Chunhua Shen 期刊: IEEE Transactions on Pattern Analysis and Machine Intelligence 时间:2022 代码:aim-uofa/AdelaiDet: AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks. (github.com) 原文摘要 We propose a simple yet effective framework for instance and panoptic segmentation, termed...
「论文阅读」CTNet: Context-based Tandem Network for Semantic Segmentation
CTNet: Context-based Tandem Network for Semantic Segmentation 论文名称:[CTNet: Context-based Tandem Network for Semantic Segmentation](CTNet: Context-based Tandem Network for Semantic Segmentation | IEEE Journals & Magazine | IEEE Xplore) 作者:Zechao Li; Yanpeng Sun; Liyan Zhang; Jinhui Tang 时间:2021 期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence 代码: https://github.com/syp2ysy/CTNet. 原文摘要 Contextual information has been shown to be powerful for semantic segmentation. This...
「论文阅读」Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning 论文名称:[Momentum Contrast for Unsupervised Visual Representation Learning](CVPR 2020 Open Access Repository (thecvf.com)) 作者:Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick 时间:2020 期刊:CVPR 解读:MoCo 论文逐段精读【论文精读】_哔哩哔哩_bilibili 原文摘要 We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning as dictionary look-up, we build a dynamic dictionary with a...
「论文阅读」Learning from Pixel-Level Label Noise: A New Perspective for Semi-Supervised Semantic Segmentation
Learning from Pixel-Level Label Noise: A New Perspective for Semi-Supervised Semantic Segmentation 论文名称:Learning from Pixel-Level Label Noise: A New Perspective for Semi-Supervised Semantic Segmentation 作者:Rumeng Yi; Yaping Huang; Qingji Guan; Mengyang Pu; Runsheng Zhang 期刊:IEEE Transactions on Image Processing,2021 原文摘要 This paper addresses semi-supervised semantic segmentation by exploiting a small set of images with pixel-level annotations (strong supervisions) and a large set of...